6.6 Extra Practice

In Exercises 1–6, solve the equation.

- **1.** $9^{3x-5} = 81^{3x+2}$ **2.** $7^x = 32$ **3.** $9^{3x+6} = \left(\frac{1}{3}\right)^{8-x}$ **4.** $6^{4x} = 13$ **5.** $2e^{3x} + 6 = 10$ **6.** $4e^{2x} - 7 = 1$
- 7. Fifty grams of radium are stored in a container. The amount R (in grams) of radium present after t years can be modeled by $R = 50e^{-0.00043t}$.
 - a. After how many years will only 20 grams of radium be present?
 - **b.** Seventy-five grams of radium are stored in a different container. The amount *R* (in grams) of radium present after *t* years can be modeled by $R = 75e^{-0.00043t}$. Will it take *more years* or *fewer years* for only 20 grams of the radium in this container to be present, compared to the answer in part (a)? Explain.

In Exercises 8–13, solve the equation.

8. $\ln(5x - 2) = \ln(x + 6)$ 9. $\log(3x + 5) = \log 6$ 10. $\log_2(3x + 12) = 4$ 11. $\log_3(3x + 7) = \log_3(10x)$ 12. $\log_2(x^2 - 2x + 1) = 4$ 13. $\log_3(x^2 + x + 7) = 3$

In Exercises 14–17, solve the equation. Check your solution(s).

14. $\ln x + \ln(x - 2) = 5$ **15.** $\log_5 2x^2 + \log_5 8 = 2$
16. $\log_3(-x) + \log_3(x + 8) = 2$ **17.** $\log_2(x + 2) + \log_2(x + 5) = 4$

In Exercises 18–20, solve the inequality.

- **18.** $e^{x-2} < 8$ **19.** $\ln x > 5$ **20.** $-2 \log_3 x + 2 \le 10$
- **21.** You deposit \$2000 in Account A, which pays 2.25% annual interest compounded monthly. You deposit another \$2000 in Account B, which pays 3% annual interest compounded monthly. When is the sum of the balance in both accounts at least \$5000?